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Fig. 1 Mitochondrial biology maintains brain physiology. a Mitochondria are the power 

house and generate ATP through relevant processes of glucose, FA and amino acid 

metabolism. They tightly support normal brain functions dominated by neuronal activity 

including synaptic transmission, neuroelectrical activity, and ion exchange. b The 

mitochondrial ETC is the site of mitochondrial ROS generation. During oxidative 

metabolism, electrons combine prematurely with oxygen to form O2 •− , which is 

dismutated to H2 O 2 by SOD2 and then converted to H2 O by catalase and GPx. There 

are also mitochondria-targeted antioxidants essential for controlling ROS homeostasis in 

the brain, such as PDRX3, PDRX5 and TRX2. c The entire protein-coding capacity of 

mtDNA is devoted to the synthesis of mitochondrial complexes except complex II. 

Mutagenesis in mitochondrial genome occurs at a much higher rate than that in the 

nuclear genome, leading to the collapse of mitochondrial functions, which is closely 

related to neurological diseases. d Mitochondrial membrane dynamics including mito-

chondrial fission/fusion, membrane interactions with other organelles and ultra-structural 

membrane remodeling, renders the multifaceted involvement of mitochondria in cell 

biology. ATP, adenosine triphosphate; cyto c, cytochrome c; ER, endoplasmic reticulum; 

ETC, electron transport chain; FAs: fatty acids; GPx, glutathione peroxidases; GSH, 

glutathione; H2 O2 , hydrogen peroxide; lyso, lysosome; O2 •− , superoxide; PDRX, 

peroxiredoxin; ROH, organic alcohol; ROS, reactive oxygen species; SOD2, manganese-

dependent superoxide dismutase; TCA, tricarboxylic acid; TRX, thioredoxin.
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