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Figure 2 Proposed model for mitochondria-centered pathogenesis in ROS-induced rheumatic diseases.

The clinical deployment of antioxidants necessitates careful risk-benefit assessment due
to their potential to disrupt physiological redox signaling. ROS serve as essential
secondary messengers regulating immune cell differentiation, autophagic processes, and
inflammatory responses. 213,214 Non-selective antioxidants may compromise antimicro-
bial defense by inhibiting neutrophil extracellular trap formation (NET), dysregulate T-
cell homeostasis through altered Treg/Th17 balance, and impair hypoxia-inducible factor
(HIF)-mediated tissue repair.

Future translational initiatives must prioritize mitochondrially-targeted antioxidants,
which achieve >100-fold organellar accumulation to maximize therapeutic efficacy while
minimizing systemic toxicity.

This review positions ROS as a central driver of mitochondrial impairment and mtDNA
damage, while highlighting the inadequacy of empirical antioxidant approaches. Despite
their therapeutic utility in conditions like rheumatoid arthritis, antioxidants exhibit dose-
dependent paradoxes—high concentrations may provoke mitochondrial toxicity via pore

activation—necessitating human validation of preclinical targets to resolve contradictory
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not releasing neurotransmitters to each other, the brain consumes 20% of the body’s
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drial proton leak and actin cytoskeleton remodeling (Fig. 1a). Neurons display most of
the energy consumption. They generate ATP predominantly within mitochondria through
oxidative phosphorylation (OXPHOS), with a small portion of ATP from aerobic
glycolysis in the cytoplasm. A
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Fig. 1 Mitochondrial biology maintains brain physiology. a Mitochondria are the power
house and generate ATP through relevant processes of glucose, FA and amino acid
metabolism. They tightly support normal brain functions dominated by neuronal activity
including synaptic transmission, neuroelectrical activity, and ion exchange. b The
mitochondrial ETC is the site of mitochondrial ROS generation. During oxidative
metabolism, electrons combine prematurely with oxygen to form O2 «—, which is
dismutated to H2 O 2 by SOD2 and then converted to H2 O by catalase and GPx. There
are also mitochondria-targeted antioxidants essential for controlling ROS homeostasis in
the brain, such as PDRX3, PDRXS5 and TRX2. ¢ The entire protein-coding capacity of
mtDNA is devoted to the synthesis of mitochondrial complexes except complex II.
Mutagenesis in mitochondrial genome occurs at a much higher rate than that in the
nuclear genome, leading to the collapse of mitochondrial functions, which is closely
related to neurological diseases. d Mitochondrial membrane dynamics including mito-
chondrial fission/fusion, membrane interactions with other organelles and ultra-structural
membrane remodeling, renders the multifaceted involvement of mitochondria in cell
biology. ATP, adenosine triphosphate; cyto ¢, cytochrome c; ER, endoplasmic reticulum;
ETC, electron transport chain; FAs: fatty acids; GPx, glutathione peroxidases; GSH,
glutathione; H2 O2 , hydrogen peroxide; lyso, lysosome; O2 «—, superoxide; PDRX,
peroxiredoxin; ROH, organic alcohol; ROS, reactive oxygen species; SOD2, manganese-
dependent superoxide dismutase; TCA, tricarboxylic acid; TRX, thioredoxin.
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