Polymorphism in the *TOMM40* gene modifies the risk of developing sporadic inclusion body myositis and the age of onset of symptoms

F.L. Mastaglia\(^a,b,*\), A. Rojana-udomsart\(^a\), I. James\(^b\), M. Needham\(^a,b\), T.J. Day\(^c\), L. Kiers\(^c\), J.A. Corbett\(^d\), A.M. Saunders\(^e\), M.W. Lutz\(^e\), A.D. Roses\(^e,f\), for the Alzheimer’s Disease Neuroimaging Initiative\(^1\)

\(^a\) Australian Neuro-Muscular Research Institute, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Queen Elizabeth II Medical Centre, Perth, Western Australia, Australia

\(^b\) Institute for Immunology & Infectious Diseases, Murdoch University, Western Australia, Australia

\(^c\) Departments of Neurology and Neurophysiology, Royal Melbourne Hospital & Department of Medicine, University of Melbourne, Parkville, Victoria, Australia

\(^d\) Department of Neurology, Concord Hospital, Concord, NSW, Australia

\(^e\) Duke University, Durham, NC 27705, USA

\(^f\) Zinfandel Pharmaceuticals, Durham, NC 27705, USA

Received 25 June 2013; received in revised form 28 August 2013; accepted 10 September 2013

Abstract

A polyT repeat in an intronic polymorphism (rs10524523) in the *TOMM40* gene, which encodes an outer mitochondrial membrane translocase involved in the transport of amyloid-β and other proteins into mitochondria, has been implicated in Alzheimer’s disease and APOE-TOMM40 genotypes have been shown to modify disease risk and age at onset of symptoms. Because of the similarities between Alzheimer’s disease and sporadic inclusion body myositis (s-IBM), and the importance of amyloid-β and mitochondrial changes in s-IBM, we investigated whether variation in poly-T repeat lengths in rs10524523 also influence susceptibility and age at onset in a cohort of 90 Caucasian s-IBM patients (55 males; age 69.1 ± 9.6). In carriers of APOE\(^e3/e3\) or \(e3/e4\), genotypes with a very long (VL) poly-T repeat were under-represented in s-IBM compared to controls and were associated with a later age at symptom onset, suggesting that these genotypes may be protective. Our study is the first to suggest that polymorphisms in genes controlling mitochondrial function can influence susceptibility to s-IBM and have disease modifying effects. However, further studies in other s-IBM populations are needed to confirm these findings, as well as expression studies of different *TOMM40* alleles in muscle tissue.

© 2013 Elsevier B.V. All rights reserved.

Keywords: Sporadic IBM; TOMM40; APOE; Susceptibility; Age of onset

1. Introduction

Sporadic inclusion body myositis (s-IBM) is a progressive degenerative and inflammatory myopathy which has a number of features in common with Alzheimer’s disease (AD), such as a late onset (most commonly over the age of 50 years), abnormal accumulation of amyloid-β and other misfolded proteins,
mitochondrial dysfunction and oxidative stress [1–4]. However, studies to date have shown differences in genetic susceptibility for the two diseases. Whereas in AD apolipoprotein APOE e4 is a strong risk factor [5], in s-IBM there is no recognised association with APOE genotype [6,7], although APOE has been shown to co-localise with β-amyloid in vacuolated muscle fibres [8]. The strongest genetic association in s-IBM is with the HLA-DRB1 and secondary HLA-DRB loci in the central MHC region [9–11]. In addition, in a phylogenetic analysis of mtDNA variants we demonstrated an association with the 4336G and 4580A D-loop variants in s-IBM, but not in AD [12].

The ‘Translocase of Outer Mitochondrial Membrane 40’ homologue (TOMM40) gene is adjacent to and in linkage disequilibrium with the APOE locus on chromosome 19. TOMM40 encodes the mitochondrial pore protein Tom40, which is part of the TOM complex and is involved in the passage of peptides and importation of amyloid-β into mitochondria [13]. Roses et al [14] first reported that in late-onset Alzheimer’s disease (LOAD), carriers of the APOE e3/ε4 genotype, with a VL-[very long] poly-T repeat from the ε3 strand and a L [Long] poly-T repeat from the ε4 strand at rs10524523 in intron 6 of TOMM40 had a higher disease risk and an earlier age at onset than individuals with the S [Short] poly-T on the APOE-TOMM40 linkage disequilibrium region. An association between carriage of the VL allele per se and disease risk was subsequently also found in other AD populations [15], but in the opposite direction, with carriage of the VL allele being found to be protective [16]. Subsequent observations demonstrated that the genotypes of both inherited alleles are in fact important in determining the age-at-onset, with homozygotes of the VL allele having the oldest age-at-onset curve and other genotypes being associated with an earlier onset [17].

In this study we investigated whether genetic variation in APOE-TOMM40 also influences disease susceptibility and the age of symptom onset in s-IBM. Our hypothesis was that genetic variants of TOMM40 may have differential effects on mitochondrial function in muscle that may impact on the risk of developing s-IBM and the tempo of the disease, and that some alleles of TOMM40 may have a protective effect.

2. Materials and methods

2.1. Subjects

DNA was collected from 90 Caucasian s-IBM patients (55 males; age 69.1 ± 9.6) recruited at the Australian Neuromuscular Research Institute in Perth, the Royal Melbourne Hospital and Monash Medical Centre in Melbourne, and the Concord Repatriation and Royal North Shore Hospitals in Sydney, who fulfilled the diagnostic criteria for definite or probable s-IBM [2,18]. All patients had a detailed clinical history taken, including the age-at-onset of the initial symptoms of limb muscle weakness, and a full neurological examination with grading of muscle strength on an expanded (10-point) Medical Research Council scale. The age-at-onset was determined from the recollection of the patients, and when available their spouses, of the year in which they first became aware of symptoms of lower limb or hand weakness, and ranged from 37 to 83 years (mean 60.4 ± 9.7 years). The mean disease duration at the time of DNA collection was 8.7 years. Muscle biopsy reports, and when necessary the biopsy slides, were reviewed. The study was approved by the Sir Charles Gairdner Hospital Human Ethics Committee (Approval Number 2006-073).

The control group comprised 205 individuals (mean age 76.0 ± 5.2 years) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) Database. The ADNI was launched in 2003 by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, the Food and Drug Administration and private pharmaceutical companies. The primary goal of ADNI has been to test whether serial magnetic resonance imaging, positron emission tomography, other biological markers, and clinical and neuropsychological assessment can be combined to measure the progression of mild cognitive impairment and early Alzheimer’s disease. The Principal Investigator is Michael W. Weiner, MD, VA Medical Center and University of California – San Francisco. ADNI is the result of efforts of many co-investigators from a broad range of academic institutions and private corporations, and subjects have been recruited from over 50 sites across the U.S. and Canada.

2.2. Genotyping

DNA samples were plated on 96-well plates for long-range PCR and sequencing which was performed at Polymorphic DNA Technologies (Alameda, CA, USA), as described previously by Roses et al. [14] and Linnertz et al. [19]. Based on the length of the PCR product, alleles of rs10524523 were classified using the convention established by Roses et al for determining alleles: Short (S), <19; Long (L) 20–29; Very Long (VL) ≥30 [14,19]. APOE genotyping was performed as described previously [19].

2.3. Statistical methods

Frequencies were compared by chi-square or stratified Mantel–Haenszel tests as appropriate. Distributions of ages at onset adjusting for gender were compared via Cox proportional hazards models. Analyses were carried out using the TIBCO Spotfire S+ package ver 8.2 (TIBCO Software Inc., Palo Alto, California).
3. Results

3.1. APOE genotypes

The majority (85/90) of s-IBM patients were carriers of APOE ε3. Of these, 50 were homozygous, 26 carried ε3/ε4, and nine carried ε2/ε3. The remaining five s-IBM cases carried ε2/ε4 (2), ε4/ε4 (2) or ε2/ε2 (1).

3.2. Poly-T repeat lengths in s-IBM and controls

In keeping with the findings of Roses et al. [14], the distribution of poly-T repeat lengths among those homzygous for APOE ε3 was strongly bimodal, with a gap between 17 and 25 repeats (Fig. 1). Analyses were confined to carriers of ε3/ε3 and ε3/ε4, within which carriage of VL was likely associated with APOE ε3. Numbers of cases and controls carrying the VL repeat length according to the two APOE genotype groups are shown in Table 1. The odds ratios within the two groups are not significantly different (p = 0.44), while the combined Mantel-Haenszel odds ratio estimate of 0.47 is significantly less than one (p = 0.019, 95% CI 0.25–0.88). Carriage of a VL poly-T repeat length within these groups is thus significantly associated with protection.

3.3. Poly-T repeat length and AAO of s-IBM

The boxplots in Fig. 2 show the ages at onset for the four subgroups of s-IBM patients defined as ε3/ε4 or ε3/ε3 carrying or not carrying VL. Note that there are only 7 individuals in the group ε3/ε4 with VL and these display more variability than the remaining subgroups. Kaplan-Meier plots demonstrating the age at onset distributions for individuals carrying and not carrying a VL poly-T length are given in Fig. 3. Whilst gender was not significant (p = 0.2), after adjusting for gender those with VL had a later age at onset overall (p = 0.038).

4. Discussion

This is the first study to investigate the influence of polymorphism in the TOMM40 gene in s-IBM. Our findings show that among carriers of APOE ε3 there is a significant association between carriage of rs10524523 genotypes including a very long (VL) poly-T repeat length allele and a reduced risk of s-IBM as in the case of AD [16]. Moreover, carriage of APOE-TOMM40 genotypes with a VL allele was associated with a later age at onset of symptoms. These findings therefore both point to the possibility that these genotypes have a protective effect and warrant further investigation.

Mitochondrial abnormalities are an important part of the pathological phenotype of s-IBM, and include ragged-red and cytochrome oxidase (COX) deficient muscle fibres, ultrastructural abnormalities, and multiple somatic mtDNA deletions which are associated with defective synthesis of COX and other components of the respiratory enzyme chain [20–22]. Mitochondrial dysfunction and oxidative stress, which is increased in s-IBM muscle fibres [23–25], are known to stimulate aggregation of amyloidogenic proteins [26]. Moreover, over-expression of βAPP and accumulation of amyloid-β are early changes in muscle fibres prior to the development of structural abnormalities [27], and over-expression of βAPP in human myoblasts in vitro leads to the development of structural mitochondrial abnormalities and loss of COX activity [28]. Increased transport of amyloid-β into mitochondria, or arrest of βAPP in the mitochondrial import pores, as has been demonstrated in AD [29,30], could interfere with COX activity and lead to increased generation of reactive oxygen species (ROS) [31]. Genetic variants of TOMM40 could be associated with altered mitochondrial pore function and transport of βAPP/amyloid-β and other proteins into mitochondria. This could in turn lead to changes in energy metabolism and increased generation of ROS, which could contribute to impaired mitochondrial integrity and muscle fibre degeneration.

The rs10524523 locus may influence susceptibility to AD and s-IBM by modulating expression levels of TOMM40 or APOE. Expression studies of TOMM40 alleles with different poly-T repeat lengths in brain have produced varying findings. The study by Cruchaga et al. [16] on a small number of AD brain samples failed to show any differences in TOM40 cDNA levels with different rs10524523 alleles. However, in a more detailed analysis of a larger number of samples, Linnertz and colleagues have shown that the VL allele is associated with higher expression levels of TOMM40 and APOE mRNA, both in normal and AD brain specimens (unpublished). Similar studies have yet to be performed on muscle samples from s-IBM and normal subjects and will be important in determining if expression levels in muscle are also altered by carriage of VL allele bearing genotypes.

The present findings support our previous suggestion that multiple genes, both immune and non-immune, may
contribute to susceptibility to s-IBM [3]. However, the findings need to be confirmed in other s-IBM patient cohorts and should also be investigated in patients of other genetic and racial backgrounds. In particular, the association with age at onset requires further confirmation, in view of the potential limitation of self-reported data on the age of symptom onset in s-IBM. Identification of new genes and polymorphisms that

Table 1

<table>
<thead>
<tr>
<th></th>
<th>ε3/ε3</th>
<th>No VL carriage</th>
<th>ε3/ε4</th>
<th>No VL carriage</th>
</tr>
</thead>
<tbody>
<tr>
<td>sIBM:</td>
<td>34</td>
<td>16</td>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>ADNI:</td>
<td>95</td>
<td>25</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td>Odds ratio:</td>
<td>0.56</td>
<td></td>
<td>0.34</td>
<td></td>
</tr>
</tbody>
</table>

Mantel–Haenszel combined OR = 0.47 (p = 0.019).

Fig. 2. Box-plots of the ages at disease onset in subgroups of ε3/ε4 or ε3/ε3 s-IBM carriers, with or without VL alleles, showing a later age at onset in ε3/ε3 homozygotes with a VL allele.

Fig. 3. Kaplan–Meier plots showing a significantly later age at disease onset in individuals with genotypes carrying a VL allele.

Please cite this article in press as: Mastaglia FL et al., Polymorphism in the TOMM40 gene modifies the risk of developing sporadic inclusion body myositis and the age of onset of symptoms, Neuromuscul Disord (2013), http://dx.doi.org/10.1016/j.nmd.2013.09.008
influence disease risk and have disease-modifying effects will provide a better understanding of the molecular pathogenesis of s-IBM and may lead to new therapeutic targets being identified for treatment of the disease.

Acknowledgements

Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro-Imaging at the University of California, Los Angeles. This research was also supported by NIH Grants P30 AG010129 and K01 AG030514.

We thank Dr V. Fabian and Dr. R. Junckerstorff from the Section of Neuropathology, Royal Perth Hospital and the other pathologists who reported the muscle biopsies, and the clinicians who referred patients. Dr A Rojana-udomsart was supported by the Enid and Arthur Home Memorial Scholarship and a University of Western Australia Scholarship for International Research Fees (SIRF). Financial support for the study was provided by Zinfadel and by the Neuromuscular Foundation of Western Australia.

References


