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Purpose of review

This manuscript reviews recently published advances in the identification of autoimmune inflammatory
myopathies (AIM)-specific and AlM-related autoantibodies considered of value in the workup of patients
suspected of having AIM. Newer autoantibodies, developments, and advances in the methodology of
testing, the gaps and pitfalls in using these assays as diagnostic biomarkers, and the importance of
considering overlap diseases and unique clinical AIM phenotypes are discussed.

Recent findings

a) studies of the various diagnostic platforms (e.g., line immunoassays [LIA]) have clarified their limitations and
raise cautions in the interpretation of the results.

b) particle based solid phase multianalyte technology (PMAT) is a promising newer diagnostic platform.

c) elucidation of older and descriptions of newer AIM autoantibody markers provide increasing clinical
value by revealing novel clinical features (including AIM subsets and overlap syndromes [OS]) and

co-existing malignancies.

Summary

The spectrum of autoantibodies and related biomarkers in AIM continues to expand. Many of these have
clear clinical implications in regard to subsets and overlap conditions of AIM, associated malignancy and

pathological findings.
Keywords
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For over half a century, interest in biomarkers for
autoimmune inflammatory myopathies (AIM) has
continuously expanded and there is little sign that
this trend is declining. Arguably, AIM was rather
‘late to the biomarker party’ when compared to its
closest relatives, systemic lupus erythematosus
(SLE), systemic sclerosis (SSc), mixed connective
tissue disease (MCTD), Sjogren syndrome (SjS),
and rheumatoid arthritis (RA). AIMs comprise clin-
ical subsets that include antisynthetase syndrome
(ASyS), dermatomyositis (DM), immune mediated
necrotizing myopathy (IMNM), sporadic inclusion
body myositis (sIBM), drug-mediated myositis and
overlap syndromes (OS). The accurate diagnosis of
AIM can be compromised because of ‘mimics’ or
doppelgangers that include metabolic myopathies,
genetic myopathies, neurological diseases (e.g.,
amyotrophic lateral sclerosis, chronic inflammatory
demyelinating polyneuropathy), acquired diseases
(e.g., acute and chronic infections), vitamin D

1040-8711 Copyright © 2023 The Author(s). Published by Wolters Kluwer Health, Inc.

deficiency, endocrinopathies (e.g., hyper- and
hypo-thyroid diseases, acromegaly, Cushing syn-
drome, Addison disease), and exposure to drugs,
toxins and other environmental agents [1].

It is now widely appreciated that circulating
autoantibodies and other proteomic biomarkers in
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KEY POINTS

e The spectrum of autoantibodies and related biomarkers
in AIM continues to expand.

e Studies of the various diagnostic platforms (e.g., LIA)
have clarified their limitations and raise cautions in the
interpretation of the results.

e Particle based solid PMAT is a promising newer
diagnostic platform. Meanwhile enzyme linked
immunosorbent assays has proven to be a
reliable alternative.

o Newer AIM autoantibody biomarkers provide
increasing clinical value by revealing novel AIM subsets
and OS and can help elucidate the risk of co-
existing malignancies.

AIM can help make an accurate diagnosis, but also
stratify patients into clinically relevant and action-
able subsets [2]. In this manner, they can serve as
valuable predictive and prognostic aids and provide
important criteria for enrollment of AIM subsets in
clinical trials. At a time when it was hoped that
biomarkers might replace moderately invasive diag-
nostic approaches such as muscle biopsy, recent
findings indicate that the muscle biopsy remains a
key to understanding the roles of biomarkers in the
pathogenesis and classification of AIM [3,4%,5-9].
In general, the autoantibody biomarkers in AIM
can be regarded as AIM-specific (AIM-S) or AIM-
related (AIM-R). Although several novel AIM-S and
AIM-R are discussed in this overview, a significant
serological gap persists (no detectable autoantibodies
or seronegative AIM) which poses a diagnostic chal-
lenge because a delayed or equivocal diagnosis may
forestall evidence-based therapy and be attended by
poorer clinical outcomes and increased healthcare
expenditures. In addition, as we understand more
about the various presentations and pathological
features of AIM, the spectrum of AIM continues to
expand. For example, sIBM was once relegated to a
disease category of its own. However, with the dis-
covery of an autoantibody biomarker directed to
NTS5c1A (C1A, Mup44) by Greenwood and his col-
leagues [10,11], involvement of autoinvasive T cells
[12], a type 2 interferon mediated pathogenesis [13]
and an appreciation that sIBM overlaps with SjS [14-
16], it is now more or less comfortably classified as an
AIM along with ASyS, DM, and IMNM [17,18,19%.
However, the notion that sIBM is not a classical
autoimmune disease is the appreciation that conven-
tional immunosuppressive agents have yet to show
remarkable benefit (reviewed in [12]). More recently
but not discussed in detail here, there has been
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interest in myopathies that are seen as an adverse
immune response to checkpoint inhibitor treatments
[20] as well as myopathies seen in the context of
severe acute respiratory syndrome coronavirus 2
infection, coronavirus disease-2019 (COVID-19),
and the cognate vaccines [21,22].

This overview will focus on some overlooked
aspects of AIM and newer published evidence
encompassing the past ~two years. Accordingly,
topics of discussion will include laboratory methods
used to detect AIM autoantibodies and related bio-
markers, newer biomarkers and their proposed clin-
ical value, an exploration of some of the newer OS
associated with AIM, along with unmet needs and
challenges in AIM research and clinical applications.

The discovery of autoantibodies in AIM dates to the
early 1980s at a time that coincides with the ‘golden
age’ of cell biology when techniques such as western
immunoblotting, immunoprecipitation (IP), and
enzyme linked immunosorbent assays (ELISA) were
replacing immunodiffusion, counter-immunoelectro-
phoresis, and hemagglutination [23]. Since then, some
of these assays are being replaced by newer and more
robust technologies such as dot immunoblot assays
(DIA) and line immunoassays (LIA), addressable laser
bead immunoassays (ALBIA), particle-based multiana-
lyte technology (PMAT), mass spectrometry and
immunoprecipitation mass spectrometry (IP-MS)
[23-26]. However, some of these novel assays that
had gained favor as high throughput, multiplexed
and relatively economical technologies, are faced by
technical and performance challenges [25,27-33]. A
narrative review the methods (IP, ELISA, LIA, ALBIA,
DIA) used to detect AIM-A and AIM-S autoantibodies
in AIM has recently been published [34™].

In the past several decades, IP of radiolabeled cell
extracts has been regarded the ‘gold standard’
immunoassay for AIM-S (Fig. 1), but with the broad-
ening spectrum of autoantibodies being reported,
challenges have emerged [29,35]. For example, not
all AIM-S or AIM-R autoantibodies are easily
detected by IP and there is no standardized inter-
laboratory protocol or commutability studies for IP.
In addition, the IP assays are unique to several
(research) laboratories and have not achieved regu-
latory approval as in vitro diagnostic devices and
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33S-methionine/cysteine labeled K562 cell extract was immunoprecipitated by reference sera and fractionated on

8% (panel a) or 13% (Panel b) SDS-polyacrylamide electrophoresis (SDS-PAGE). Images were obtained by autoradiography.
Components of the target autoantibodies are shown by black dots or black lines. Immunoprecipitation analysis of anti-OJ sera
reveals complexity of the OJ system (left lane, panel a). Glutamyl - aspartyl, all are aminoacyl IRNA synthetases; AIMP,
aminoacyl tRNA synthetase complex interacting multifunctional protein. Positions of the molecular weight marker is shown on the
right. Panel a: 8% SDS-PAGE. MDA5, melanoma differentiation associated gene 5; MW, molecular weight; NXP-2, nuclear
matrix protein 2; NHS, normal human serum; SAE, small ubiquitin-like molecule activating enzyme; SRP, signal recognition
particle; SMN, survival of motor neuron; TIF, transcriptional intermediary factor. Panel b: 13% SDS-PAGE. MW molecular weight;
NHS, normal human serum; RNP, ribonucleoprotein; SMN, survival of motor neuron; SRP, signal recognition particle.
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hence are labelled laboratory developed tests and/or
designated as research use only (RUO).

IP-MS represents a powerful tool for the discov-
ery novel autoantibodies and as an approach to
closing the seronegative gap in AIM [24,36-38].
However, the significance of such findings is highly
dependent on the selection of an appropriate refer-
ence or comparator group [39] and newly identified
autoantibodies would be most clinically useful if
they can be ported to more conventional in vitro
diagnostic platforms such as ELISA [40], LIA [28],
ALBIA or PMAT [26,41,42]. In addition, although IP-
MS method holds promise for the discovery of novel
biomarkers, due to the current lack of standardiza-
tion and harmonization, it will likely remain a
valuable research tool, but a challenge for it to meet
In Vitro Diagnostic Regulations (IVDR) require-
ments [43]. It should be noted that ELISA has been
routinely used in many countries for decades and
some ELISA AIM-S autoantibody kits have been
validated by IP with very good agreement [44"]. In
addition, newer platforms such as the use of LIA is
limited and PMAT (discussed below) are not cur-
rently available in some countries. In summary, IP,
once regarded the ‘gold standard’ immunoassay to
detect AIM autoantibody targets (reviewed in [29]),
may face IVDR and other challenges that challenge
its survival as the ‘go to’ immunoassay for AIM.

LIA and related technologies (e.g., dot blots) to detect
AIM-S and AIM-R autoantibodies have become widely
available and used in clinical diagnostic laboratories.
Their convenience, ease of use, and low capital equip-
ment costs are notable assets. Each “line”” on a LIA strip
is ‘printed’ with the target antigen of interest. By
placing 10 to 20 analytes (e.g., target antigens) on a
single strip allows a multiplexed approach to detection
of autoantibodies in AIM and other systemic auto-
immune rheumatic diseases (SARD). One of the lim-
itations of LIA is variable sensitivity and specificity of
individual analytes on a multiplex strip leading to
quantitative and qualitative variability of the different
autoantibodies. Establishing site-specific reference
ranges is of vital importance to limit false positive
and false negative results.

A recent study reported the comparison of LIA to
IP for the detection of anti-Mi-2 (nucleosome remod-
elling complex) antibodiesin DM [45]. In their cohort
of 432 consecutive DM patients, the frequency of
anti-Mi-23 antibody by LIA was highest (75.0%),
followed by anti-Mi-2 by IP (35.0%) (IP detects the
antigenic complex) and anti-Mi-2a by LIA (20.0%),
respectively. Mi-2 detected by IP had the best
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agreement for DM (95.0%) compared to 70.0% and
25.0% for the LIA Mi-2a and Mi-28, respectively. Of
note, anti-Mi-23 detected by LIA was significantly
associated with a non-DM diagnosis.

In another study of anti-small ubiquitin-like
modifier activating enzyme (SAE) in suspected
inflammatory myositis [46], a higher cut-off on
LIA >=36 units) yielded better agreement with IP.
Similar limitations and approaches to LIA testing of
anti-melanoma differentiation-associated protein
(MDAS), anti-NXP2 (nuclear matrix protein) and
anti-TIF1-y (transcriptional intermediary factor)
were reported by others [47,48,49%,50,51]. A study
of anti-HMGCR (3-hydroxy-3-methylglutaryl-coen-
zyme A reductase) antibodies showed that detection
of anti-HMGCR autoantibodies using LIA had high
estimated clinical sensitivity and good concordance
with an in-house laboratory developed ELISA [52].
However, the diagnostic specificity of LIA was 88.5%
leading to the suggestion that ‘dual positivity’ by
another anti-HMGCR immunoassay should be used
to improve specificity should be considered.

PMAT represents a newer solid-phase diagnostic
platform that is anticipated to address some of the
current limitations relating to precision and accu-
racy of autoantibody testing in AIM [53]. One of
these limitations includes the lack of analyte specific
controls and proper calibration as well as the tem-
perature control of the test. A strategy to address this
is to include quality controls for every analyte
included in the array. This means that each test
run is based on a specific calibration curve. Several
studies on patients with AIM were carried out using
PMAT. While some studies leveraged a RUO multi-
analyte assay [26,32,42], one other study specifically
focussed on Mi-2a/Mi2B [41]. A more recent study
that compared IP and LIA to a beta (RUO) version
[26] of a PMAT AIM kit [26] reported remarkable
variations among all methods. The PMAT assay
containing Jo-1, MDA-5, NXP2, SRP, Mi-2, TIF-1y,
and EJ analytes showed slightly better correlation
with IP than LIA, although the kappa agreement was
strongly dependent on the antibody tested. When
the data obtained from IP were used as the reference
for a receiver operating characteristic analysis, good
discrimination, and a high area under the curve
(AUC) values were found for PMAT (AUC=0.83,
95% confidence interval, CI 0.70-0.95) which was
significantly higher (P=0.0332) than the LIA
method (AUC=0.70, 95% CI 0.56-0.84).

In another study of 264 AIM patients using
PMAT, 80 (30.3%) tested positive for at least one
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of the AIM-S as compared to 12/200 (6.0%) in the
control group, the majority of which had antibodies
levels close to the upper range of normal [32]. Of
note, 6/264 (2.3%) AIM were positive for more than
one antibody. The overall sensitivity and specificity
were 68.2% and 94.0%, respectively, leading to an
odds ratio (OR) of 33.8. Additional studies based on
larger cohorts using regulatory body approved (i.e.,
Food and Drug Administration USA; European
Union CE marked) PMAT Kkits are needed to fully
assess the ‘postmarketing’ performance of this novel
system for the detection of autoantibodies in AIM.
The PMAT used to detect a spectrum of AIM-S auto-
antibodies represents a potential high throughput
and more standardized alternative to IP and other
diagnostic assays.

Although several novel AIM autoantibodies have
recently been reported, a serological gap persists
(autoantibody ‘megative’ AIM), posing a diagnostic
challenge. This review will primarily focus on newer
autoantibodies as the spectrum of AIM-S and AIM-R
autoantibodies continues to widen (Table 1).

The anti-OJ autoantigen system is very complex and
hence it is among the most difficult AIM-S to detect
accurately [63,64] (Fig. 1). According to an interna-
tional survey, as discussed above despite concern
about its accuracy, LIA is commonly used for the
detection of AIM-S including anti-OJ [28]. Recently,
a summary of studies analyzing the performance of
LIA for the detection of anti-OJ antibodies con-
cluded poor performance of LIA for the detection
of anti-OJ [25]. Poor performance was also observed
in a recent study by Preger et al. [S5""] as well as by
Vulsteke et al. [24] who detected anti-OJ antibodies
via IP-MS in a serum that was negative by LIA.
When Mimori ef al. developed an antiaminoacyl
tRNA synthetase ELISA (mixture of Jo-1, EJ, PL-7, PL-
12, KS), they originally included the isoleucyl-tRNA
synthetase (IARS) epitope/peptide but disregarded it
because of lack of concordance with IP results [40].
Similarly, the original studies using the PMAT AIM-S
assay excluded anti-OJ from the analysis due to the
lack of a reliable assay. A more recent PMAT study
included O] as an AIM-S analyte based on isoleucyl
tRNA synthetase (IARS) and lysyl tRNA synthetase
(KARS), two components of the OJ complex [25].
This and another recent study, concluded that IARS
and KARS represent promising antigens for anti-OJ

1040-8711 Copyright © 2023 The Author(s). Published by Wolters Kluwer Health, Inc.
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detection [64]. Comparison with IP indicated that
anti-KARS might show higher correlation with IP
than anti-IARS antibodies. Since the commercial LIA
uses IARS [25], which was also successfully used in
ELISA [64], it is most likely that the protein con-
struct or the immobilization of the analyte in the
LIA are responsible for the remarkable difference in
performance between LIA and PMAT. Another rea-
son might be the origin of the protein used by Muro
et al. [64] which was derived from a cell free system
allowing for other proteins of the OJ complex to be
present in the cell—free derived antigen.

Interestingly, Vulstake ef al. [24] showed that
the amount of immunoprecipitated individual com-
ponents of the OJ complex varied between different
sera, suggesting heterogeneity in the reactivity of
anti-OJ antibodies. High correlation between sam-
ples for components of macromolecular complexes
is expected since the entire complex is immunopre-
cipitated. However, different reactivity patterns in
IP are frequently observed for anti-OJ [63] (Fig. 1,
panel a).

Vulsteke et al. utilized untargeted protein IP com-
bined with gel-free liquid chromatography-tandem
mass spectrometry (IP-MS) as an approach to close
the seronegative gap in AIM [24]. As part of that
effort, a novel autoantibody to cytoplasmic cys-
teinyl-tRNA-synthetase (CARS1, anti-Ly), a new
member of the ASyS group was identified and
reported (Table 1). Other than filling the seroneg-
ative gap for AIM, the clinical significance of these
new autoantibodies is unknown and needs to be
elucidated. Muro et al. also detected one serum each
for CARS and varyl tRNA synthetase by ELISA and IP
using in vitro translated proteins [75].

Autoantibodies to the survival of motor neuron
(SMN) complex, at one time relegated to autoanti-
body ‘Death Valley’ [131], has been reclaimed with
renewed interest in autoantibodies associated with
the nuclear dots HEp-2 IFA staining pattern (ICAP
AC-7). Anti-SMN complex antibodies was described
in three Caucasian females with PM [132], followed
by more recent reports employing ALBIA described
anti-SMN in a patient with severe IMNM and car-
diovascular collapse [102] and in scleromyositis
[113] (discussed in more detail below). While anti-
SMN can be associated with the AC-7 HEp-2 IFA
staining pattern (Fig. 2), it is important to appreciate

www.co-rheumatology.com 5
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Table 1. Autoimmune inflammatory myopathy autoantibodies with emphasis on recent findings.

Index and Recent

AIM Subtype Clinical Features/Comments References
ASyS Myositis, polyarthritis, ILD, mechanic’s hands. Most, if not all, cytoplasmic [54,55""
ARS may be target antigens. New ARS may fill AIM seronegative gap
Jo-1/histidyl* Most common ASyS autoantibody; reported in 8.5% of DM; associated [56-58]
with mild-moderate muscle disease (necrotizing myopathy*); ILD (up to
90%); arthritis including erosive disease
PL-7/threonyl* Second most common ASyS autoantibody; associated with severe inferstitial ~ [59,60]
lung disease; reported overlap with anti-MDAS5
PL-12/alanyl* May present with ILD only; myopathy responsive to treatment; case report [61,62]
of anti-PL-12 +ve AIM who developed ALS
OJ/isoleucyl* OJ is a macromolecular complex making detection of these autoantibodies ~ [25,63,64]
more challenging. Compared to other anti-ASyS antibodies, it is
associated with more severe myositis. IARS epitope peptide promising
new analyte
El/glycyl* Nonspecific interstitial pneumonia (NSIP) with overlapping anti-Ro52/ [65,66]
TRIM21 common; report of PHT
KS/asparaginyl* Fill seronegative gap in ASyS. Strong association with ILD. May identify an  [67-70]
AIM subset with sicca symptoms, CADM, chronic ILD and a relatively
favorable outcome.
Zo/phenylalanyl* Fever, myopathy, ILD, arthritis, mechanic’s hands, HLA 8.1 ancestral [71,72]
haplotype.. Reported in <1% ASyS
Ha/YRS/tyrosyl* Fill seronegative gap in ASyS. Reported in <1% ASyS; 2% in ILD; rash and  [73,74]
arthritis
CARS1/Ly/cysteinyl* Fill seronegative gap in ASyS [24,75]
VARS/varyl* Fill seronegative gap in ASyS [75]
DM Myositis, distinctive skin rash, nailfold capillary enlargement
Mi-2a Mi-2B Mild to moderate DM, cancer risk low. Favorable prognosis. Interpret LIA [45,48,49",76]
results with caution. PMAT assay becoming available.
SAE Classical DM cutaneous rash may be presenting feature; Moderate muscle;  [46,77]
cancer in up to 15%
MDAS Severe cutaneous/clinical amyopathic DM; rapidly progressive ILD with [78",79-82,83",84,85]
variable but progressive HRCT findings; lymphopenia and co-existent
anti-Ro52/TRIM21 associated with poorer outcome; high activated type |
interferon score;
NXP2 Higher risk of malignancy, dysphagia, mild-moderate skin; type | [33,47,86-89]

TIF1-y/TRIM33

Sp4 transcription factor

CCAR1

FHL1

IMNM
SRP

HMGCR

SMN
PM

www.co-rheumatology.com

interferonopathy; ILD (NSIP/OP) with good prognosis; may present with
isolated seronegative polyarthritis ILD; interpret LIA with caution.

Higher risk of malignancy; decreased risk if coincident other AIM-S
antibodies such as anti-CCAR1 and anti-Sp4 (see below); inferpret LIA
with caution; possible molecular mimicry with TRIMs and viruses

Associated with DQA1*04 and DRB1708. In JDM, frequent Raynaud’s
phenomenon and less pronounced muscle involvement. Reported overlap
with anti-TIF1-y decreased cancer risk

When overlap with anti-TIF1-y, associated with decreased cancer risk

Fills seronegative AIM gap; may not be AIM-S; Juvenile DM; associated
with anti-Ro52/TRIM21 but milder disease

Severe myopathy, high CK levels

Severe muscle, dysphagia, cardiac involvement; skin not typically involved;
use of PLEX and anticomplement therapies advocated

Severe muscle (IMNM); statin exposure a factor but not as frequent as
previously reported

Severe muscle disease

Diagnosis of Exclusion

[50,90,91]

[92%,93]

[94"= 95]
[96,97]

[98,99]
[100,101]

[102,103]
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Table 1 (Continued)

Index and Recent

AIM Subtype Clinical Features/Comments References
FHL1 Severe myositis. Seen in PM, sIBM, juvenile AIM. Up to 14% of AIM, fills [96,97,104,105]
seronegative gap
sIBM Older >50; distal upper limbs and quadriceps, slow progression. Poor
response to conventional AIM therapies; Associated with SjS
Mup44/cNTA/NT5c1A  Sensitivity 50%; Specificity 90%. Identifies distinct subset of AIM [106-108]
vCP Sensitivity 26%; Specificity 87%; helps fill seronegative gap [109]
FHL1 Also seen in PM; ~11% juvenile AIM; fills seronegative gap. [96] (see above)
NXP2 Detected by LIA but not confirmed by IP. Dysphagia a significant [47]
association.
oS
PM/Scl PM/DM overlap with SSc: myositis, cutaneous DM, calcinosis, ILD with [110,111]
good functional outcome; low risk of malignancy; hand joint contractures
UTRNP MCTD, pulmonary hypertension Absence of AIM-S antibodies, absence of [112]
muscle inflammation or typical dermatomyositis skin rash, less disturbed
pulmonary function tests, presence of puffy hands, Raynaud's
phenomenon. Those with myositis: severe necrotizing myositis associated
with frequent extra-muscular manifestations; anti-RNP-+ myositis a
separate entity with features of IMNM but different from other subgroups
of myositis (dermatomyositis, ASyS). Only a minority of anti-RNP+
patients had AIM-S antibodies: anti-SRP; anti-OJ antibodies.
SMN Scleromyositis; poor outcome; more studies needed. [102,113]
RuvBL1/2 Scleromyositis; PM/SSc overlap [114]
Ku Lupomyostits; Axial myopathy, mild muscle disease. AIM/SSc: synovitis, [115-117]
joint contractures, myositis; negatively associated with vascular
manifestation of SSc. Anti-Ku cohort: high association with ILD, arthritis,
Raynaud’s phenomenon; moderate association with antidsDNA and
nephritis
U3RNP /fibrillarin Diffuse SSc with myositis, scleromyositis. More common in African [118,119,1207
American patients
OTHER
Ro52/TRIM21 Accompanies other AIM-S and AIMR antibodies; most commonly anti-Jo-1, [82,97,121%%,122%%,123-125]
anti-MDA-5. More severe and rapidly progressive disease and ILD
(except juvenile AIM; aberrant cytokine circuit; isolated anti-Ro52/
TRIM21 may identify a distinct clinical disease.
Cortactin Not AIM subset specific; rapidly progressive ILD; overlap with anti-Ro52/ [82,126,127]
TRIM21, Mi-2, NXP2
Mitochondria AMA detected in up to 10% of AIM. Associated with severe arrhythmia [128,129,130"7]

and slowly progressive proximal muscle weakness and lordotic posture.

*Respective amino acyl transfer RNA synthetase.

AIM, autoimmune inflammatory myopathy; AIM-R, AIM-related; AIM-S, AIM-specific; ALS, amyotrophic lateral sclerosis; ARS, aminoacyl tRNA synthetases; ASyS,
antisynthetase syndrome; CADM, clinically amyopathic dermatomyositis; CARST, cysteinyl iRNA synthetase; CCAR1, cell division cycle and apoptosis regulator
protein 1; cNTA, cytosolic 5’ nucleotidase 1A; DM, dermatomyositis; FHL1, four and a half LIM domains 1; HMGCR, 3-hydroxy-3-methylglutaryl-coenzyme A
reductase; HRCT, high resolution computed tomography; IARS, isoleucyHRNA synthetase; ICI, immune checkpoint inhibitor; IFN, interferon; ILD, interstitial lung
disease; IMNM, immune-mediated necrotizing myopathy; Ku, regulatory subunit of DNA-dependent protein kinase; LIA, line immunoassay; MCTD, mixed
connective tissue disease; MDA, melanoma differentiation-associated protein; Mi-2, nucleosome remodelling complex; NSIP, nonspecific interstitial pneumonia;
NXP2, nuclear matrix protein 2; OP, organizing pneumonia; OS, overlap syndromes; PM, polymyositis; PM/Scl, exosome protein complex; PMAT, particle based
multianalyte technology; RNP, ribonucleoprotein; SAE, small ubiquitin-like modifier activating enzyme; sIBM, sporadic inclusion body myositis; SjS, Sjgren
syndrome; SMN, survival of motor neuron; SP4, SP4 transcription factor; SRP, signal recognition particle; SSc, systemic sclerosis; TIF, transcriptional intermediary
factor; TRIM21, tripartite motif containing 21; TRIMs, tripartite motifs; VCP, valosin containing protein.

that this pattern can be obscured by other staining
patterns such as the AC-5 HEp2 IFA pattern typically
seen in anti-U1RNP sera and MCTD. Hence, it is
interesting to postulate that sera with anti-U1RNP
may harbor anti-SMN antibodies and when present

may be associated with different clinical features
than anti-U1RNP alone in MCTD, SSc, and SLE.
Of interest and relevance to the findings mentioned
above, a previous study reported that 20% of
patients with anti-U1-RNP as detected by RNA IP

1040-8711 Copyright © 2023 The Author(s). Published by Wolters Kluwer Health, Inc. www.co-rheumatology.com 7
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Anti-survival of motor neuron (SMN) antibodies associated with the AC-7 HEp-2 indirect immunofluorescence
asssay (IFA) staining pattern where intense staining of nuclear Cajal bodies (arrows) is a characteristic feature in a serum with
monospecific anti-SMN (a) and a serum with anti-UT-RNP and anti-SMN. SMN is localized to coarse granules characteristic of
AC-5 and anti-UT-RNP sera. IFA, immunofluorescence assay; SMN, survival of motor neuron.

techniques had histological evidence of IMNM
[133], but because RNA IP was used to detect auto-
antibodies, anti-SMN might not have been detected
in that study. IP can be used to confirm the presence
of anti-SMN (Fig. 1, panel b).

Using a proteomic approach, Fiorentino et al. iden-
tified ten additional autoantibodies in DM patients
bearing anti-TIF1-y autoantibodies, a known risk
factor for malignancy [94"",95]. Of the ten novel
targets, autoantibodies directed against the cell divi-
sion cycle and apoptosis regulator protein 1 (CCAR1)
were the most common and were negatively associ-
ated with contemporaneous cancer (discovery
cohort OR 0.27 [95% CI 0.7-1.00], P=0.050; vali-
dation cohort OR 0.13 [95% CI 0.03-0.59],
P =0.008). Of note, when cancer eventually appeared
in some patients, it occurred significantly later in

8 www.co-rheumatology.com

anti-CCAR1-positive individuals (median time from
DM onset 4.3 vs. 0.85 years, respectively; P=0.006)
and the malignancies were more likely to be localized
(89% of anti-CCAR1-positive malignancies present-
ing at stage O or 1 compared with 42% of patients
without anti-CCAR1 antibodies, P=0.02). In addi-
tion, when the number of additional autoantibodies
increased in anti-TIF1-y-positive DM, the frequency
of cancer decreased (P < 0.001). Hence, itappears that
as the diversity of B cell responses in anti-TIF1-y DM
patients increases, the likelihood of malignancy
decreases. Importantly, these findings indicate that
more detailed autoantibody detection at diagnosis
might better predict cancer risk. Unfortunately, as
is the case for many of the newer autoantibodies
associated with AIM [29], there was no evidence
presented that anti-CCAR1 is associated with a spe-
cific IFA pattern on HEp-2 substrates. Clearly, these
intricacies of autoantibody profiles lend support to
the use of multiplexed autoantibody arrays in the
diagnosis and staging of DM and other AIM.
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In a similar approach, a phage IP sequencing tech-
nology was used to identify transcription factor Sp4 is
anovel autoantigen in sera from DM patients [93]. In
an ELISA (using a full-length human recombinant
protein) testing 371 AIM (255 DM, 28 ASyS, 40
IMNM, 29 sIBM and 19 PM), 80 SARD controls and
200 healthy comparators, anti-Sp4 autoantibodies
were detected in 10.5% DM patients and in a single
RA patient but in none of the other comparator
cohorts. Sp4 is a probable transcriptional activator
that binds to GT and GC box promoter elements.
Remarkably, there was ~96% overlap of anti-SP4 with
anti-TIF1-y positive patients. Among these anti-TIF1-
vy-positive patients, none of those bearing anti-Sp4
had amalignancy. In contrast, among 35 anti-TIF1-y-
positive patients without anti-Sp4 autoantibodies,
14% (P=0.04) had cancer. Similar findings were
derived from a validation cohort from another cen-
ter. Hence, anti-SP4 joins anti-CCAR1 as a biomarker
that appears to help rule out malignancy in DM
patients with anti-TIF1-y antibodies.

Autoantibodies directed to cortactin, a member of the
actin-binding protein family important in cell move-
ment involving the cytoskeleton, were detected in 7/
34 (20%) PM, 9/117 (7.6%) DM, 2/7 (26%) IMNM, but
none of the 4 sIBM [126]. However, there was no
apparent association with specific clinical features.
Anticortactin antibodies were more frequently posi-
tive in patients with PM and IMNM than in DM or
sIBM. Of note, it was the only myositis autoantibody
found in sera of three patients suggesting anticortactin
may help close the seronegative gap in AIM. In a more
recent study of 670 adult AIM and 343 juvenile AIM
using an ELISA [127] anticortactin autoantibodies were
more common in adult DM patients (15%; P = 0.005),
particularly those with coexisting anti-Mi-2 autoanti-
bodies (24%; P=0.03), anti-NXP-2 autoantibodies
(23%; P=0.04), anti-Ro52/TRIM21 autoantibodies
(47% vs. 26%; P=0.001), or anti-NT5cla autoanti-
bodies (59% vs. 33%; P=0.001). Notably, the titers
of anticortactin antibodies were higher in patients
with interstitial lung disease (ILD) (0.15 vs. 0.12 arbi-
trary units; P=0.03). The prevalence of these autoanti-
bodies was not different in juvenile myositis patients
(2%) as compared to juvenile healthy controls (4%).

There is considerable interest in the malfunction of
mitochondria in AIM and other rheumatic diseases
[134",135] suggesting that the presence of

1040-8711 Copyright © 2023 The Author(s). Published by Wolters Kluwer Health, Inc.
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antimitochondrial antibodies (AMA) found in up
to 10% of AIM [130™] may add important light to
the pathophysiology and diagnosis of AIM. AMA-
associated myopathies are reported as a homogene-
ous disease entity with severe arrhythmia and slowly
progressive proximal muscle weakness with lordotic
posture, features which are irrespective of the pres-
ence of primary biliary cholangitis (PBC) [129].
Albayda et al. reported a small cohort of seven
AIM (DM and PM) with conventional AMA (M2
EP, MIT3) detected by ELISA [128]. Aberrations
pointing to mitochondrial dysfunction were seen
in 2/7 patients and co-existing PBC, autoimmune
hepatitis, psoriasis, and Hashimoto’s thyroiditis
were seen in 5/7 individuals. Of note, in this study
AMA was associated with a distinct inflammatory
myopathy phenotype that was frequently associated
with chronic skeletal muscle disease and severe
cardiac involvement. A recent study concluded that
mitochondria are central to skeletal muscle involve-
ment and calcinosis of juvenile dermatomyositis
(JDM) [135]. Last, Kainaga et al. reported a 48-
year-old female with myositis associated with PBC
but without classical AMAs [129]. This and related
observations summarized above suggest the impor-
tance at determining AMA in a more systematic
approach as recently reported in SLE [136].

The techniques employed for the discovery and
detection AIM-S and AIM-R autoantibodies have
undergone significant advancements, aligning with
our growing understanding of AIM disease patho-
genesis. Technologies such as IP-MS has expanded
our repertoire of new diagnostic and prognostic
biomarkers available for AIM, while high-through-
put methods including ELISA, LIA, ALBIA, and
PMAT, have helped the adoption of these newer
biomarkers into clinical practice. However, there
continues to be a need to fill the seronegative gap
for AIM and identify markers of disease severity,
poor outcome (e.g., ILD, malignancy), and novel
targets for therapy. Several promising candidate
biomarkers have emerged recently, and the expect-
ation is that this growth and success will continue in
AIM, despite being a late bloomer in the field
of biomarkers.
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